Virtual Memory Information

Tutorial Introduction & Background

Today application is getting bigger and bigger. Therefore, it requires a bigger system memory in order for the system to hold the application data, instruction, and thread and to load it. The system needs to copy the application data from the HDD into the system memory in order for it to process and execute the data. Once the memory gets filled up with data, the system will stop loading the program. In this case, users need to add more memory onto their system to support that intense application. However, adding more system memory costs the money and the normal user only needs to run the the intense application that requires the memory only for one or two days. Therefore, virtual memory is introduced to solve that type of problem.


Terminology & Explanation

There are two types of memory, which are as follows:

* System Memory is a memory that is used to store the application data and instruction in order for the system to process and execute that application data and instruction. When you install the memory sticks to increase the system RAM, you are adding more system memory. System Memory can be known as either the physical memory or the main memory.


* Virtual Memory is a memory that uses a portion of HDD space as the memory to store the application data and instruction that the system deemed it doesn't need to process for now. Virtual Memory can be known as the logical memory, and it controls by the Operating System, which is Microsoft Windows. Adding the Virtual Memory can be done in system configuration.


Tutorial Information & Facts or Implementation

Virtual Memory is a HDD space that uses some portion of it as the memory. It is used to store application data and instruction that is currently not needed to be process by the system.

During the program loading process, the system will copy the application data and its instruction from the HDD into the main memory (system memory). Therefore the system can use its resources such as CPU to process and execute it. Once the system memory gets filled up, the system will start moving some of the data and instruction that don't need to process anymore into the Virtual Memory until those data and instruction need to process again. So the system can call the next application data and instruction and copy it into the main memory in order for the system to process the rest and load the program. When the data and instruction that is in the Virtual Memory needs to process again, the system will first check the main memory for its space. If there is space, it will simply swap those into the main memory. If there are not any space left for the main memory, the system will first check the main memory and move any data and instructions that doesn't need to be process into the Virtual Memory. And then swap the data and instruction that need to be process by the system from the Virtual Memory into the main memory.

Download Full Article

0 comments:

Post a Comment